A. Start - WHAT ARE WE GIVEN??? - Write this Down FIRST!

B. End-Yes, look at this SECOND- where do we need to end up?

C. Middle- Make a PLAN to get from the start to the end

- a. What vocab are we given? Anything from the diagram?? WRITE THESE DOWN! ©
- b. Can we rewrite any of our segments or angles as an equation that would be helpful?
- c. Will the transitive property or substitution property be helpful?
- d. Do we need to switch between congruence and equality?

GIVEN: DG = 11

GF = 11

 $\overline{GF}\cong \overline{EF}$

PROVE: $\overline{DG} \cong \overline{EF}$

STATEMENTS

1.

2. DG = GF

3.

4._____

REASON

1.

2.

3. Definition of Congruent Segments

4._____

GIVEN: $\angle 6 \cong \angle 7$ **PROVE**: $\angle 5 \cong \angle 8$

STATEMENTS

1.

2. ∠6 ≅ ∠5

3. _____

4._____

5. _____

REASON

1.

2

3. Vertical Angles Theorem

4. Transitive Property of Congruence

5.____

GIVEN: $\angle ABD$ is a right angle

∠CBE is a right angle

PROVE: $\angle ABC \cong \angle DBE$

A	В
•	
	_ \ _E
C	

STATEMENTS

1._____

2.
$$m \angle ABD = 90^{\circ}, m \angle CBE = 90^{\circ}$$

3.
$$m \angle ABC + m \angle CBD = m \angle ABD$$

$$m \angle DBE + m \angle CBD = m \angle CBE$$

4.____

5.
$$m \angle ABC + mCBD = m \angle DBE + mCBD$$

6.

7. $\angle ABC \cong \angle DBE$

GIVEN: $\angle 2 \cong \angle 3$ PROVE: $\angle 1 \cong \angle 4$

REASON

1._____

2. _____

3. _____

4. Substitution Property of Equality.

b._____

6. Subtraction Property of Equality

7. _____

**BEFORE YOU START WRITING- Look at the information you are given AND the picture. What do you already know? How can you use this information to PROVE the final statement? Once you have a plan- start with writing everything you originally knew...then follow through with your plan...

STATEMENTS REASON

GIVEN : $2AB = AC$ PROVE : $AB = BC$	Ā	B C
STATEMENTS	REASON	
		*
GIVEN : $m \angle 1 + m \angle 2 = 180^{\circ}$ $m \angle 1 = 62^{\circ}$		1 2
PROVE: $m \angle 2 = 118^{\circ}$	_	
STATEMENTS	REASON	
GIVEN: $RT = 5$ RS = 5		R
$\overline{RT} \cong \overline{TS}$ PROVE: $\overline{RS} \cong \overline{TS}$	I	
	DEACON	T S
STATEMENTS	REASON	